Improved generalized neuron model for short-term load forecasting
نویسندگان
چکیده
The conventional neural networks consisting of simple neuron models have various drawbacks like large training time for complex problems, huge data requirement to train a non linear complex problems, unknown ANN structure, the relatively larger number of hidden nodes required, problem of local minima etc. To make the Artificial Neural Network more efficient and to overcome the above-mentioned problems the new improved generalized neuron model is proposed in this work. The proposed neuron models have both summation ð P Þ and product ðpÞ as aggregation function. The generalized neuron models have flexibility at both the aggregation and activation function level to cope with the non-linearity involved in the type of applications dealt with. The training and testing performance of these models have been compared for Short Term Load Forecasting Problem.
منابع مشابه
Short Term Load Forecasting using Generalized Neuron Model with Error Gradient Functions
Short Term Load Forecasting(STLF) varies from an hour to hour and is used for requirement for control, unit commitment, security assessment, optimum planning of power generation, and planning of both spinning reserve and energy exchange, also as inputs to load flow studies and contingency analysis. Artificial neural networks (ANN’s) has drawbacks like inputs nodes or hidden nodes which can caus...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملShort Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کاملApplication of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets
Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...
متن کاملShort-Term Load Forecasting Using Soft Computing Techniques
Electric load forecasting is essential for developing a power supply strategy to improve the reliability of the ac power line data network and provide optimal load scheduling for developing countries where the demand is increased with high growth rate. In this paper, a short-term load forecasting realized by a generalized neuron–wavelet method is proposed. The proposed method consists of wavele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft Comput.
دوره 8 شماره
صفحات -
تاریخ انتشار 2003